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Abstract-The equations of radiative heat transfer between surfaces in relative motion are derived 
in this paper. A particular case of parallel plates is studied as an example. The solution is obtained 

by numerical methods. 

NOMENCLATURE 

A,, A,, absorptivity of surface 1 or surface 2, 
respectively ; 

6, thickness; 
c, specific heat; 
E,, E,, emitted radiation flux of surface 1 or 

surface 2, respectively; 
F,, F2, heat-transfer area; 
F l-29 mutual heat-transfer area; 
HI, If,, irradiations ; 

brightnesses; 
thermal conductivity; 
distance between the plates (see Fig. I) ; 
parameter, equation (20) ; 
parameter, equation (22); 
heat rate; 
local heat flux ; 
mean heat flux; 
reflectivities ; 
absolute temperatures; 
energy ; 
velocity; 
co-ordinates; 
dimensionless co-ordinate, equation 
(20). 

Greek symbols 
Y, specific gravity; 
El, E2, emissivities; 
0, dimensionless temperature difference, 

equation (23); 
,i)‘, dimensionless temperature, equation 

(20) ; 
E, co-ordinate; 
0, Stefan-Boltzmann constant; 
7, time ; 

A elementary configuration factor, equa- 
tion (3) and Fig. 1; 

91-2, local configuration factor; 
Q, perimeter. 

THE cases of radiative heat transfer, in which the 
heat exchanging surfaces are in relative motion, 
are of conspicuous practical importance. How- 
ever, such problems (as far as the author is 
informed) have not been analysed since. An 
example of such a problem and the method of 
its solution is to be shown in this paper. 

The considered system consists of two sur- 
faces assumed to be gray and diffusely reflecting, 
one of which is at rest and the other moves with 
constant velocity W. 

Let J1, J, be the local brightnesses of the sur- 
faces; then d2til_2 = J1 d”FI_2 is the decrease of 
energy of the element dF, of surface F,, caused by 
radiation towards the element dF2 of surface Fe. 
d2FI_2 denotes the mutual area of the elements 
dF,, dF,. 

On the other hand, the element dF2 radiates 
towards dFI a portion d2Ui_I = J2 . d2FI_,. There- 
fore, in the state of equilibrium, a heat rate 0 
is supplied to the surface F,, and 

d”Q = d2tiI_, - d2ti2_, = (JI - J2) d2F,_,, 

or, after integration in respect of surface Fl 

d 0 = S, (JI - J2) @F,-,. (1) 

The local heat flux at the surface F, is thus 

q=?$= (J1- J2j.!$2, ’ J 2 Ft 2 
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or 

where 
Ii .I’, , (J, Jib+ d/q,, (2) 

d, 
cos ,B1 . cos & _~ dZF_, 

n1.2 dF, dF,’ (3) 

The brightnesses J1 and J2 may be evaluated from 

J, E, - R,H,. 

12 E2 + J&H,. ” (4) 

where E,, E, are the emitted radiation fluxes, 

RI, R,-the reflectivities, and HI. HZ-the 
irradiations. 

The latter are defined by 

wherefore. in connection with (3). we obtain 

H, = jFI J,+ dFZ;,, H, ,& Jd dp‘, . (5) 
Elimination of the irradiations from (4) and (5) 
yields 

J1 E, -’ R, .iFr J,+ db:,, 

J2 : E2 i- R, sl, J1$ dFI, 
or 

The difference of the brightnesses AJ ---- J, J2 
satisfies the integral equation 

AJ =- E, E, + R, j,E& dF;, R, j,,E,$ dF, 

; R,R, jk-> dL1, ,&. dF,+“AJ. (71 

Now, let the surface Fl be a radiator of constant 
temperature TI and emission E1 ye fItiT;, where 
l 1 is the emissivity of that surface. The surface 
F, is heated by radiation. Let us assume that the 
surfaces are cylindrical with arbitrary profile. 
and their generatrices are parallel to each other 
and to the direction of the velocity IV. With the 
notations from Fig. 1 we may write down the 
equation of heat conduction in the body 2 with 
surface Fz. viz. 

(8) 

where Y_i IS the Laplacian operator III the piano 
perpendicular to the axis .\. which is parallel 
to the direction of motion (and to the genera- 
trices): the symbols c. y and h denote the specilic 
heat, the specific gravity and the heat conductivity 
of the body 2. 

If II’ + 0 the problem may bc stationa~ \. 
d-/i T 0. and the boundary condition\ foi 
equation (8) arc: 

I 

1% . grad 7’ l/ 

at the surface. 
The system (2), (7). (8) and (9) is sufficient to 

evaluate the temperature 7, and consequently 7,. 
which is variable in the s-direction, whereas 7’, 

is assumed to be constant. As a supplementary 
initial condition we may assume that at the 
entrance (see Fig. 1) .v Il. it is 7 I, 
T,,,, ,:. T1. Consequently, for .+ f:, it must he 
T E2 T,. 

The problem thus formulated is very com- 
plicated. We will solve a particular simplified 
case by assumption that the body 2 is a sheet of 
(small) thickness h. The temperature across the 
section in the yz-plane may be thus regarded as 
constant. 

From integration of (8) over the area F. of the 
cross-section in the yz-plane we get 

for a stationary case. 
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Now, by virtue of the Gauss theorem and This equation is an ordinary differential one, 
condition (9) it is since dF1 does not depend upon x, which-on 

grad T . dQ = i 
the other hand-influences E,; therefore 

j, +E, dE, = E, .41-a 

wherefore 
or 

Sz, is the perimeter of the surface 2 and approxi- T,(O) = Go. (17) 
mately (for sufficiently thin sheets) bL$ = F, so 
that (10) yields For example a plane problem will be solved. It is 

(see Fig. 1) ,!& = /3z = fi and consecutively 

cywb . 
dT2 d2T2 
-=q+kbdx”. 
dx (11) 

41-2 = ; [ 1 + & x”) 

1 
* (18) 

A subsequent simplication consists in assumption A 
of Fl being a black surface (Q = 1, R, = 0) and 

ssuming A, = Ed and R, = 1 - A, = 1 - Ed 

in neglection of heat conduction in the body 2 
we obtain 

in the x-direction. In such cases the equations, 
describing the problem, simplify, namely 

q= J,,AJ4dFl’,, 
1 + &+x+p) 

2 

11 
’ 

AJ = El - E, - R, SF1 El+ dF,, 

dT2 

(12) 
w9 = 4% (19) 

cywb dx = q. where 

Besides it is 

El = uTf = const., 

E, = s2uT;, 

(Tz)z=o = T,,. 

Therefore 

2cywb &, +!, x+=-;, m = ~... 
1 1 IUT? 

(20) 
(13) As a rule, numerical methods must be used in 

order to obtain the solution of (19). For 
sufficiently great x+, however, it may be assumed 

S&+ W = -& &,W'l= 41-2 .El, 

where 

1 
= 0, 

x+ 
1 + x+2 2/(1 +x+2> w l. 

This approximation is valid if x+ > 10. We get 

A-2 = - 

s 

cos 81. cos p2 

7v2 @l (14) 
then 

Fl d6 
is the local configuration factor. mdx+ = 2n(l - G4) 

Elimination of q and AJ from (12) yields and 

dT2 
cYwbdx = E,(l - R29L-2)&m2 - s 1$_6 

F,QE2d& 
In -- + arc tg 6 + const. 

1-6 
, 

(15) (21) 
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FIG. 2. 
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FIG. 3. 

so that x * > m for iI:-== I. 
Furthermore, if .Y 4 I, so that 

it may be assumed 

d (‘I 62 t- I I 
“& ~~ 2~- ’ 

EZP 

and consequently 

for small s ’ including x + = 0. 
Tn Fin. 2 a olot of curves 8(x+) is given as an 

example for some values of 111; it was assumed 
R, ~- O-3 and Ed ----_ 0.6. Fig. 3 shows another 
relationship, namely 

for Q = 1.0: tz --= 0.6. The curves are calculated 
for conditions of heating and cooling with the 
same initial temperature difference and the same 
lowest temperature, ceteri.v par&~, that is for 
the same value of (2cy~!b)/(l~r). For the con- 
ditions of heating of the surface F2 it was 
assumed B, -:~ 0.3 and 177 -- 1 : for cooling it was 
consequently 8 ,) ~: l/O.3 3.333 and ~7 

l/(0.3)” w 37. It can be seen that the temperature 
distribution in surface Ez is different in both 
cases. 

To calculate the mean heat flux qni we first 
find the heat supplied to the body 2 on the 
distance .Y: it is evidently i, c.yn’h(T, 7,,). 

whence 

or with introduction of (20) 

YIN IY7 h i' 0 

c,E, 29 \.: 
(24) 

Fig. 4 shows the relationship qnl/(t,E,) VI. 
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FIG. 4. 

(6 - 8,) for Ed = O-6; 6, = 0.3. For x+ = 0 we 
find using (22) 

($yz+_o = f (q$ - 8;). (25) 

The derivative 

for x+ = 0 may be evaluated by use of (19). 
Namely it is 

wherefore 

6 - 6, Xf X -1-2 
__- = 

X+ 
s; + s; . 21 + a;’ . -3jm + . . . 

and 

m 
$+ !!$Lx++... 

_. __- 
29 

s;, + 8;; . 
,@“’ 

x+ + -O- . x+2 + . . . 

Therefore 

,&~zYi].+~0z~;2 g. 

The values of Sh and 8; may be evaluated from 
(19). The final result is 

(26) 

Thus it can be seen that the curve m = const. 
in Fig. 4 approaches the sooner the curve a, 
valid for x+ B 1, the greater is m ; the curves 
with m < 1 differ very little from the curve b, 
valid for x+ -+ 1. Therefore the curve a, 
obtained from (21), may be regarded as a curve 
m = const. for m = co ; the curve b, which is 
obtained from (22), is valid form = 0. 

Rksum&Cet article donne les equations du rayonnement thermique entre des surfaces en mouvement 
relatif. A tite d’exemple le cas des plaques paralleles est etudie. La solution est obtenue par des 

methodes numtriques. 

Zusammenfassung-Die Gleichungen ftir den Warmeiibergang durch Strahlung zwischen Obertllchen, 
die sich relativ zueinander bewegen, werden hier abgeleitet. Ein spezialler Fall mit parallelen Platten 

ist an einem Beispiel erlautert. Die Lijsung llsst sich mit numerischen Methoden erhalten. 


